Between my second and third year of university study I was delighted to be offered a 12 week summer internship at the Advanced Manufacturing Research Centre’s (AMRC) Integrated Manufacturing Group (IMG).
The AMRC are one of seven High Value Manufacturing, Catapult companies. The aim of these companies is to bridge between academic research and industry, completing research which tackles current problems and is industrially commercial. This is with the aim of maintaining Great Britain’s position as one of the world’s leading countries in state of the art technology and innovation as well as driving the country’s economic growth in this sector.
The AMRC are one of seven High Value Manufacturing, Catapult companies. The aim of these companies is to bridge between academic research and industry, completing research which tackles current problems and is industrially commercial. This is with the aim of maintaining Great Britain’s position as one of the world’s leading countries in state of the art technology and innovation as well as driving the country’s economic growth in this sector.
The IMG is one of the many divisions of the AMRC and has recently relocated to the newly built Factory 2050, which is the first reconfigurable type factory of its kind. The IMG focus on cutting edge manufacturing and assembly technologies, advanced robotics, flexible automation, next generation man-machine interfaces and new programming and training tools.
During the 12 weeks of my placement I completed a project with a colleague to create a Reconfigurable Factory Demonstration. This demonstration was designed to show a scaled down version of the capability and potential that an operational reconfigurable factory could have. This is the same concept on which Factory 2050 was built (and more generally Industry 4.0 has). The demonstration comprised of a focused Internet of Things (IoT) network, created solely for the equipment within the demonstration. The equipment included: ABB and KUKA robotic arms, a KUKA youBot which is an omnidirectional AGV, a Raspberry Pi 3 as the central broker for the IoT network as well as Arduino Leonardos connected to each of the larger pieces of equipment. The Arduinos connected to the robotic arms and the KUKA youBot itself communicated with the Raspberry Pi Broker via a MQTT messaging protocol.
Whilst I completed work with all aspects of the project, ranging from creating the electronic boards used to connect the Arduinos to the Robotic Arms, to programming the Arduino’s to communicate over the MQTT network in C++, my work largely focused on the automation of the KUKA youBot. It was my responsibility to program the KUKA youBot within ROS (Robot Operating System). ROS is an open source framework which is being increasingly used within multi device projects and more specifically projects involving robotics – as the name would suggest. The framework operates using a nodal network where messages are published to topics and received by nodes subscribing to the same topics, with the idea that each node could be programmed for each of the devices in the ROS network.
As well as being exposed to a vast amount of equipment and learning a lot of new technical knowledge, many of the skills I have been developing through SELA have been heightened further as a result of the internship. Working closely with just one colleague on the project improved my project management and one-to-one communication skills and highlighted the importance of producing clear and concise documentation/programming comments to enable a team to work efficiently.
Being fortunate enough to have had this experience at AMRC, with the avuncular nature of the staff and the company itself, implores me to recommend completing summer internships to any student. My time at AMRC was extremely beneficial to my technical and personal development along with also being thoroughly enjoyable throughout!
No comments:
Post a Comment