Sunday, October 2, 2016

Summer Placement: Department of Chemical and Biological Engineering, University of Sheffield

Samuel Grant, SELA Cohort 2015

Over the summer of 2016 I had the opportunity to take part in the SELA Summer Placement Scheme. Through the programme I worked with Dr Mark Ogden in the Chemical and Biological Engineering (CBE) department.

My placement started off like any new research project, by creating a white paper of previous research in this area. This took about two weeks to finish, under the guidance of Dr Ogden, by which time I had gained some insight into the process that was being used and any limitations that existed.

I then began designing the rig, using CAD in order to create a dimensionally accurate design which could be used for ordering of parts and materials. In addition to this, I began sourcing additional resources that I would need to get the rig to an operational state. With the help of Keith Penny, Dr Ogden’s technician, I found a working Peristaltic Pump and the necessary tubing that would move the chemicals through the extractor. I must give my thanks to Keith, who without this project wouldn’t have moved as smoothly. One of the most important lessons I have learnt during this project is that the vital role technicians play in research is understated and that they deserve respect for the hard work they do, both in helping academics with research and the running of labs for undergraduate study.

With the design complete and materials bought, Keith and I began building the rig. The structure of the rig was going to be made of box section steel and would support rectangular sections of 13-ply plywood, which had been treated to be resistant to chemical spills.

Using an angle grinder, I cut the box steel to the necessary lengths that had been designated in the CAD design. After this had been done, I used a MIG (Metal Inert Gas) welder to join the sections together. This was an interesting experience, as I had never used a MIG welder before and the learning curve was harsh with the inclusion of a small piece of melted metal falling into my ear - an accident that even the most stringent health and safety supervisor couldn’t have foreseen.  However after two days of work with no more accidents, the rig was built. The extractor was placed within it and connected up to the Peristaltic pump. Testing was then carried out to check the rig had no leaks, and any leaks that were found were patched up using Teflon. In addition to this any electrical equipment that was used needed to be PAT tested, teaching me that it is important to schedule work orders in advance to avoid delays.

This summer was an insight into the life of an academic researcher, which is a varied and often challenging role within the university system. Hours of work can often vary from anywhere between a few meetings a day, through to twelve hours of designing and drawing using CAD. The challenges of working within a relatively small budget was also interesting, resulting in a hunt throughout the department for equipment no longer in use that could be requisitioned for use within my research , echoing the adage that one man’s rubbish is another man’s treasure. To any person going into research, I would recommend asking around your department before buying any expensive equipment, it may save you a significant amount of money.

I would recommend doing a research placement to any member of the engineering faculty as it is a rewarding experience that will definitely improve your career prospects.

No comments:

Post a Comment